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Funded by:

 a. Core module: hydrological model TOPKAPI-ETH

 b. Forest-landscape model: vegetation dynamics 

 c. Water quality model: nutrients and pollutants
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 Eco-hydrological model = a + b + c
Coupling the hydrological 
model with the vegetation 
component 

                            +

1. Sensitivity analysis of LPJ-GUESS
Investigate the most important - sensitive parameters of the model

2. External coupling
The models will run separately, but TOPKAPI-ETH will be fed with some se-
lected !uxes from LPJ-GUESS simulation (throughfall, interception evapora-
tion and transpiration) and will return to LPJ-GUESS the soil water content.

3. Full coupling based on constant values of biomass and 
leaf area index (LAI)
The evapotranspiration component will be calculated within TOPKAPI-ETH 
following the approach of LPJ-GUESS but using constant values of biomass 
and LAI for a period of 5 years.

4. Full coupling
Include calculations of biomass and LAI in TOPKAPI-ETH and enable long-
term runs without inputs from LPJ-GUESS.

The eco-hydrological model:

The main goal of the eco-hydrological model is to    
simulate the changes of the hydrological response 
due to land-use changes and climate variability.

The core module will be the physically based 
distributed hydrological model, TOPKAPI-ETH 
which is derived from the original model proposed 
by (Ciarapica and Todini, 2002; Liu and Todini, 2002; 
Liu et al., 2005). It will be integrated with new com-
ponents to simulate speci"c hydrological ecosys-
tem services related to vegetation dynamics and 
transport of nutrients and pollutants.

For the vegetation component, we will use the 
LPJ-GUESS model (Smith et al., 2001; Sitch et al., 
2003) which is appropriate for describing the evo-
lution of vegetation in response to climate condi-
tions.

Transport processes of nutrients and pollutants will 
be modelled at the basin scale following a mass-
response function approach proposed by Rinaldo 
et al., 2006 a, b.

Expected Results

Interfacing distributed watershed models with landscape and veg-
etation models as well as with transport models can provide an in-
tegrated modelling tool to mimic the complex interaction between 
hydrological and ecological systems and to explore the e#ects of 
anthropogenic forcings on it.

The eco-hydrological model will be interfaced with an 
approach describing the transport processes of nitrogen 
and phosphorous on the basis of residence and travel 
time.

A vegetation dynamics module will be embedded in the 
"nal version of the eco-hydrological model and will allow to 
mimic the catchment response  accounting for the dy-
namic evolution of the vegetation. 

TOPKAPI-ETH is a raster based model which allows for spa-
tially and temporally explicit simulation of the basin 
processes, such as soil water dynamics, overland and chan-
nel !ow, surface and channel erosion, evapotranspiration, 
snowmelt, etc.
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Research Question

To understand the joint e#ect of climate and land use changes on 
catchment hydrology and the related ecosystem services, including 
feedback mechanisms.


